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Magneto-gasdynamic flow over a wedge 

By D. C.  PACK AND G. W. SWAN 
Department of Mathematics, University of Strathclyde, Glasgow 

(Received 3 September 1965) 

The solution for the flow of a fully ionized gas over a wedge of finite angle is 
known for the case when the applied magnetic field is aligned with the incident 
stream. In this flow there are current sheets on the surfaces of the wedge. When 
the magnetic field is allowed to deviate slightly from the stream, the current 
sheets may move into the gas and become shock waves. The magnetic fields 
adjacent to the wedge above and below it have to be matched. A perturba- 
tion method is introduced by means of which expressions for the unknown 
quantities in the different regions may be determined when there are four shocks 
attached to the wedge. The results give insight into the manner in which the 
shock-wave pattern develops as the obliquity of the magnetic field to the stream 
increases. The question of the stability of the shock waves is also examined. 

1. Introduction 
The basic problems in applications of fluid mechanics are the behaviour of a 

fluid in motion either with free boundaries or over a solid body. For flow over a 
solid body a fundamental problem, useful for a general understanding of the 
properties of the fluid under consideration, is that of a uniform infinite stream 
impinging upon a semi-infinite wedge. The study of this flow led to important 
results in conventional gasdynamics, and the same may be expected from the 
corresponding study in magneto-gasdynamics. Some work has already appeared 
on the subject. First, Cabannes (1959) presented the solution to the problem 
of the steady flow of a perfectly conducting fluid over a symmetrical wedge 
at  zero angle of attack when there is an applied magnetic field aligned with the 
oncoming stream. It is well-known that a magnetic field aligned with the up- 
stream flow a t  infinity remains aligned everywhere in an inviscid, perfectly con- 
ducting fluid.? This problem is the simplest possible extension of gasdynamics. 
The attached plane stationary magneto-gasdynamic shocks are two in number 
and symmetrically placed as in gasdynamics. The flow field and the magnetic 
field inside the wedge remain uncoupled for fields aligned in the flow, so that it 
is not necessary to specify the conductivity of the wedge. In  the absence of a 
component of magnetic force normal to the surfaceiof the wedge there is no 
tangential Lorentz force acting on the inviscid fluid particles in contact with 
the wedge; hence the presence of a current sheet on the wedge surface is permis- 
sible and such a surface, in fact, separates the body of moving fluid from the 

i This is easy to prove from the basic equations of continuous flow, and an examination 
of the jump relations across a shock wave (see $ 3  below) shows quite simply that it re- 
mains true across a shock wave. 
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solid boundary. Expressions were derived by Cabannes for the velocity, density 
and pressure jumps in terms of the shock angle p and the semi-wedge angle 8. 
The trigonometric equation for the shock angle was found to be of fifth order in 
tan ,8 and required to be solved numerically. 

The corresponding problem for an applied magnetic field oblique to the 
stream has received considerable attention from Kogan (1960) who restricted 
attention to thin wedges and thin aerofoils, for which linearization of the equa- 
tions is possible and the exercise becomes one involving only the theory of 
characteristics. Chu & Lynn (1963) considered the problem of the two-dimen- 
sional steady flow of an infinitely conducting fluid past a non-conducting wedge 
with a magnetic field non-aligned with the oncoming stream. By means of a 
counting procedure they indicated that to obtain sufficient equations to solve 
for the number of unknown parameters it was required to match the solution 
for the flow with that found in the wedge. They considered the jump conditions 
which hold across weak shocks (characteristics) and restricted their analysis to 
thin wedges. Their prime object in this linear theory was to demonstrate the 
effect of the coupling of the flows above and below the wedge via the boundary 
conditions on the magnetic field. In  a more recent paper, Mimura (1963) pre- 
sented a solution to the non-linear problem of the shock-wave configuration on a 
non-conducting wedge of finite angle in the presence of an incident perfectly 
conducting steady stream. In  this case, however, the magnetic field was applied 
perpendicular to the uniform flow and was assumed to be weak. He indicated 
that the flow had t o  pass through four shock waves, two for the upper surface 
and two for the lower. 

In  the following sections, the equations for the problem of flow of fully ionized, 
inviscid gas past an infinite non-conducting wedge with four attached shock 
waves are developed in full generality. They are then used to show how flow 
with four attached shock waves may develop from the solutions of Cabannes 
when the magnetic field ahead of the wedge becomes oblique to the stream. A 
method of perturbation is found for small obliquity x, which illustrates how the 
current sheets, lying along the surfaces of the wedge, move out into the stream 
to give the additional shock waves. In  the wedge a magnetic field, inclined at  a 
finite angle to the wedge axis, is set up. If Ic, is the ratio ofAlfv6n speed to fluid 
speed upstream, then for k ,  < 1 expressions can be obtained for the quantities 
in the regions between the second shocks and the wedge surfaces. These have 
been calculated within the limits imposed by restricting expansions to the 
second power in x,. Perturbation solutions of this kind could not be found 
for k, 2 1; however, it  has been argued in another paper (Pack & Swan 1965) 
that for these values of k, the shocks found by Cabannes are either unstable or 
physically unrealizable, and the results obtained here lend support to these 
views. 

2. Statement of the problem 
Consider the two-dimensional steady flow of a fully ionized gas, here idealized 

as a perfect, inviscid fluid of infinite electrical conductivity in irrotational 
motion over a stationary, semi-infinite, straight-walled, non-conducting sym- 
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metric wedge at zero angle of attack to the oncoming stream. Without loss of 
generality the permeability of the body may be assumed to be the same as that of 
the incident stream. Diamagnetic effects are ignored and Maxwell’s equations 
are used in their usual form in conjunction with the basic approximations and 
equations of magneto-gasdynamics. Displacement currents are neglected and 
the gas is assumed to be electrically neutral. The applied magnetic field of magni- 
tude HI is oriented a t  an angle x1 to the incident flow, which has a uniform speed 
7, a t  infinity upstream and is directed along the axis of the wedge (figure 1). 

d 

FIGURE 1. Flow over an insulating wedge in an oblique magnetic field: stable four-shock 
configuration. Two typical magnetic field lines are shown, one of which penetrates the 
wedge and one does not. 

(The suffix 1 refers throughout to conditions upstream of the leading shock wave.) 
The non-conducting wedge is assumed to  be symmetrical with semi-vertex angle 
03. The restriction to & symmetrical wedge is not necessary (the field is, in any 
case, unsymmetrical) but leads to some simplification of very complicated equa- 
tions and makes it easier to draw comparisons with the results of conventional 
gasdynamics. The two-dimensional flow is assumed to be of restricted type, 
i.e. the magnetic field is assumed to lie entirely in the plane of the flow, the (2, y)- 
plane, which is supposed to be normal to the leading edge of the wedge. In 
this type of two-dimensional flow div D vanishes, D being the electric displace- 
ment vector, and consequently there can be no distribution of space charge. 
The addition of a third component of magnetic field independent of z, while 
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making the equations more complicated, is straightforward from a theoretical 
point of view and will not be considered here. As pointed out by Chu & Lynn 
(1963), its omission removes from the flow field a pair of Alfvh waves, one above 
and one below the body. 

On the basis of linearized theory, Kogan (1960) has shown that, when the 
equations of motion are ‘fully hyperbolic ’, there are four real characteristics 
(other than streamlines) through every point. In  a full non-linear theory the 
characteristics through the apex of the wedge, representing weak discontinuities 
for the thin wedge, may be expected to be replaced by shock waves or expansion 
waves, as appropriate. The fluid flow has to be such that the magnetic fields on 
the surfaces of the wedge are compatible with the field inside the insulating 
wedge, which is governed by an elliptic differential equation. The lack of align- 
ment in the magnetic field induces different shock and flow patterns on the upper 
and lower surfaces of the wedge. The solution will be sought, as indicated in 
figure 1, by the juxtaposition of uniform regions of perfectly conducting fluid 
separated by shock waves. 

3. Basic equations 

Maxwell’s equations take the form: 
Rationalized MKS units are used throughout. Under the assumptions made, 

divH = 0, 

curlH = j, 

and Ohm’s law is j = o(E +pV x H), 

where V, H are respectively the velocity and magnetic fields, j is the current 
density vector, CT the electrical conductivity, p the magnetic permeability and 
E the electric field. 

The equations holding across a plane, stationary shock wave in an infinitely 
conducting gas are (see, for example, Bazer & Ericson 1959) 

[H,1 = 0, (4 
[ ~ V n l  = 0, ( 5 )  

[&V + ( p  + &pH2) n - pH,H] = 0, (6) 

[Pvn(+v2+YPI(Y- ‘)P+PH~/P)-PK(H.V)I = 0, (7) 

[V,H - H,V] = 0, (8) 

pV,[Sl 2 0, (9) 

where p is the pressure in the gas, p the density, S the specific entropy and y 
the ratio of specific heats. Here the suffix n indicates a component normal to 
the shock wave. The square brackets are used to indicate the change, across the 
shock wave, in the enclosed quantity. 

In  the following x, 0, ,I3 and 6 are used to denote, respectively, the inclinations 
of the magnetic field, the fluid velocity, the first and second shock waves 
to the axis of the wedge. The suffix 2 refers to conditions in region I1 
between the first and second shocks, and the suffix 3 to conditions in region I11 
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between the second shock and the wedge surface. Quantities without primes 
refer to the flow in the upper and primed quantities to the flow in the lower 
half-plane. 

A count of unknown quantities shows that in region I1 there are the seven 
unknowns H,, 4, p,, p, ,  x,, 8, and p, and in the region I11 the six unknowns 
H3,V3,p3,p3, x3 and 6. Thus there are thirteen unknowns for the solution on the 
upper surface; there are also thirteen from the two regions below, giving a com- 
bined total of twenty-six unknowns. An examination of the jump relations 
(4) to (8) shows that across any single shock there are but six independent basic 
scalar equations; there are therefore twenty-four equations altogether and 
twenty-six unknowns. Accordingly, we are led to the conclusion that for non- 
aligned fields the solution in the fluid depends on the solution of the boundary- 
value problem within the non-conducting wedge. It is easy to show (Swan 1961; 
Chu & Lynn 1963) that the magnetic field inside the semi-infinite non-conducting 
wedge must be constant. In  consequence, the magnitude and direction of the 
magnetic field in the wedge are the same on the upper and lower surfaces of the 
wedge. This result supplies two further relations once the connexion between 
the values of the magnetic fields in the fluid and the wedge at the interface have 
been established. This matter is investigated in the next section. 

4. Conditions at the fluid-wedge interface 
At the interface between the two media the normal component of the magnetic 

induction is required to be continuous. It has been assumed that there is no 
change in the permeability across the interface, hence continuity of H, (the 
suffix n always indicates the normal component across the interface between 
two adjoining regions) has to be ensured. The tangential component of H 
may or may not be continuous. If it is not, then a current sheet lies on the inter- 
face. In  the event that H, =+ 0,  the current sheet and magnetic field together 
produce a Lorentz force acting on the layer of particles in contact with and 
moving along the wedge. It has been customary to rule this possibility out on the 
grounds that an inviscid fluid cannot support a surface traction. If this is ac- 
cepted, then, for H, =+ 0, no current sheet is permissible; in consequence, the tan- 
gential component of H, and hence H itself, must be continuous across the inter- 
face. For the problem under consideration this implies that the vector H has 
the same value in the fluid on both the upper and lower surfaces of the wedge. 
This result supplies the two additional conditions required to bring the number 
of equations up to the number of unknown quantities and thus to make the 
problem theoretically soluble. Before proceeding it is useful to point out that the 
correct tangential boundary condition to be satisfied a t  the interface is not quite 
so straightforward as has sometimes been supposed. Stewartson ( 1960) has 
discussed at  some length the nature of the limiting condition a t  an interface 
between solid and fluid as the kinematic viscosity v in the fluid tends to zero 
and the electrical conductivity tends to infinity. The jump condition to be 
satisfied by the magnetic and velocity vectors across the interface is 
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In  general the values of r and v are such that the limits of vr may be taken to be 
zero. Thus [I31 = 0 and consequently [HI = 0 as assumed above. However, in some 
astrophysical applications the limit may well be finite.? Then a discontinuity inH 
at the interface is necessary and the surface force inevitable. The usual concept 
of an inviscid fluid must therefore be modified in this case in order to allow a 
correct representation of the boundary conditions to be made. This state of affairs 
does not materially affect the solution of the problem under discussion, the 
result being merely a modification of the two additional conditions on H,, 
Hi (involving also V, and Vi). 

When H, = 0, no difficulties of the above kind arise, the fields in the fluid and 
wedge being completely uncoupled. Cabannes's problem was therefore capable 
of solution without any reference to the nature of the wedge or the field inside it. 

In  what follows it will be assumed for the sake of definiteness and simplicity 

lim vr = 0, 
that 

and that the continuity of H across the interface between the fluid and wedge 
has to be assured. 

u+ w 
v+o 

5. Equations holding across shocks 

From (4), H,, = H,,, or 

The first shock on the upper surface 

H2IHl = sin (P- Xl)/sin (P- xz). (10) 

From (5 ) ,  plV,, = p2Kn, a statement of the continuity of the mass flux across 
the shock, and this may be written as 

PZIP1 = (KIV,) sinP/sin (P-0,). (11) 

By use of the tangential component of (6) and the equation (lo),  it follows that 

The quantity k: is the ratio of the Alfv6n to the flow speed. Equations (1 1) and 
(1 2) may be combined to give 

(13) 
p_l - - tan (P - 6,) - k; *(P; X I )  sin (x1- Xz)n (P - 6,) 
P2 tan P sin ~3 cos (p - 0,) sin (P - x,) ' 

The normal component of (6) combined with (12) leads after some algebra to the 
result 

PZIPl + 4Y."1Hz/Hd2 - 1 

where E = Mk = b/a, the ratio of the Alfv6n speed to the speed of sound a. As 
usual, M denotes Mach number. 

t The authors are indebted to Prof. K. Stewartson for this observation. 
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Equation (7) gives 

441- WVZ,)+k2,(1 -P1H~/P,H2,)+(1-(;C~/~2,) /M2,(Y-  1)  

- k2,{cos x1 - (EJ&/KHl) cos (x2 - S,)} sin (p- Xl)/sin,8 = 0. (15) 

When the flow direction 8, and the inclination x, of the magnetic field are known, 
this equation gives an expression for the shock angle p. When the fields are 
aligned, it reduces to  a quintic equation in tan p, the equation found by Cabannes 
and solved by him by numerical methods to give the complete solution for the 
wedge under this condition. 

The component of (8) tangential to the shock gives 

(v,/v,) sin ( x 2  - 02) = (Hl/H,) sin x1. (16) 

Substitution of (10) and (12) in (16) leads after some little effort to an equation 
of the fourth degree in tan p, with coefficients involving given quantities and 
tan x,, tan S2. It may be arranged in the form 

Q tan@, = P, 
where 

P = (tan~2-tanxl){tan~~sec2xl(tanp-tanx,)  

+k2, tan~,sec~p(tanp-  tan x1)2} 

0 = ((1 - tanx1tanx2)tan2b+(tan2p- 1) tanx1tanp}sec2xl (tan/?-tanx,) 

+k;(tanp- tanxJ2 (tanx2- tanxl) seczp. 

and 

The six equations (10) and (12)-( 16) will form the basis of the analysis in subse- 
quent sections. The remaining 18 shock equations may be derived very simply 
from these by the transformations indicated below. 

The second shock on the upper surface 
The angle between the magnetic field and the direction of flow upstream of 
the second shock on the upper surface is x, - S2. By referring all angles to the 
flow direction in this region, the equations appropriate to this shock follow from 
those obtained above by means of the substitutions: 

6 - 8, for p, 8, - 8, for S,, x3 - 8, for x2 and x2 - S2 for xl. 

The shocks on the lower surface 
The equations for the shocks on the lower surface may be obtained directly from 
those established for the upper surface. The simplest form results if we measure 
directions downwards from the axis of symmetry in figure 1 and add a prime 
to the variables p, 8, x2, . . . , to mark quantities in the lower half-plane. The 
equality of the magnetic field vector for both half-planes ahead of the leading 
shocks, and also behind the second shocks, is then provided for simply by writing 
- x1 for x1 and - x3 for x3. 
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As already explained there are 26 dependent variables for which there are 
24 equations derived above and two boundary conditions. The transcendental 
nature of the equations involved renders a direct analytical approach virtually 
impossible. The equations could be tackled on a fairly large electronic computer, 
but again the number of parameters suggests that a considerable amount of 
complicated interpolation would be necessary in order to obtain results. All 
solutions must of course be subjected finally to the thermodynamic test of non- 
diminishing entropy laid down by (9), and the choice of branches where two 
possible shock directions exist has also to be made. In  view of this it seemed 
worthwhile to try to narrow the problem to that of finding how the general 
configuration begins to develop from it known solution by making a small altera- 
tion in some parameter and attempting an analytical approach. 

The starting-point chosen was Cabannes’s solution for a magnetic field 
aligned with the stream. The variation introduced was in the direction of the 
magnetic field upstream of the wedge. The non-alignment of the field provides 
interesting insight into the adjustment of the fields in the wedge and in the fluid. 
As the inclination x1 of the magnetic field to the stream tends to zero, the con- 
figuration has to pass from one in which there is continuity of magnetic field 
at the interface to one in which a current sheet lies on the surface. 

6. Perturbation of the Cabannes solution 
Since the field inside the non-conducting wedge is constant, the condition 

of zero normal component on both upper and lower surfaces of the wedge for 
aligned fields in the fluid requires that there shall be no magnetic field inside the 
wedge. Corresponding to the collapse of the second family of characteristics into 
streamlines in the limiting case of aligned fields, it is to be expected that the 
second shock wave will fall on to the wedge surface and that this will provide 
the source of the current sheet appearing in the Cabannes solution. Another 
way of looking at this is to consider that the magnetic field in region I1 will 
orient itself so that H, is parallel to the second shock in the limit as x1 -+ 0, 
while there will be no magnetic field in region I11 in this limit. Under these 
circumstances, on putting 6 = x2 in the equation corresponding to (17) for the 
second shock on the upper surface the condition 

is obtained, and, if shock angles grea,ter than &r are ignored, this has the roots 

xz = 62 or x2 = x3. 

The first of these is consistent with the Cabannes limit; when this is preserved, 
the analysis outlined below shows that x2 += x3 in the limit as x1 --f 0 and the 
angle x3 is therefore not restricted to approach 8, as x1 -+ 0. 

As will be seen below, the values of quantities in regions I11 and 111’ may not 
be found to order x1 unless the perturbations from the Cabannes limits are 
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calculated to order xf . The following perturbations are therefore introduced, 
the subscript c representing the (known) Cabannes values: 

Here b,, B,, c,, C,, . . . , I , ,  L, are constants to be determined. A set of six linear 
equations is obtained by equating terms of first order in x1 after substitution of 
(18) in (lo),  (ll),  (12), (14), (15) and (16). The last of these yields at once 

92-4 = (V ,Hl /~H, )C  ’ 0 (19) 

(necessarily positive since V and H are scalar resultants). The same procedure 
in region 11’ with (18) modified to read 

H i / H ;  = (Hz/Hl)e-b~Xl+B~x21,  etc., 

leads to the result 9;;-1;; = g 2 - 1 2  > 0. (20) 

The $ow near the wedge 
For the transition to region I11 the assumptions consistent with the previous 
analysis are 

where a is the, as yet unknown, orientation of the magnetic field in region I11 
and is O( 1). (The particular form chosen for 6, with the perturbation measured 
from x2 instead of 0,, aids in simplifying the algebra.) 

When these relations are substituted into the shock equations and terms of 
order x1 compared, it is found that 

(24) 

P3lP2 = 1 + iY4W (25) 

and f 3 + 9 2 - l 2  = * k2cf35 (26) 
where k, = (E, ,W~)~.  

In  region 111’ (in the lower half-plane), the equations corresponding to (21) 
are 
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where we have used the result that H is constant throughout the non-conducting 
wedge. 

An analysis may be carried out exactly as for region I11 to obtain formulae 
for Hi/HL, Vi/V;l, etc., corresponding to (22) to (26). 

Different cases now arise according as k,, < = or > 1. 

6.1. k2, < 1 

The two values of f 3  given by (26) are negative. A necessary and sufficient con- 
dition for the flow in region I1 to intersect the second shock wave, as it must do 
in a physically real situation, is that 6 > 8, or f3+g2 - 1, > 0. Accordingly, since 
f 3  < 0, the upper sign in (26) has to be dismissed and thus 

f 3  = -(92-Z2)/(1+k2c). (28) 

On substitution of the ratios (22)-(25) into the energy equation, one finds that 

This equation yields the value of g, and it follows easily that, to a first approxi- 
mation (independent of xl), 

and 

Thus V3/V,, p 3 / p 2  and p3 /p2  are all greater than unity. The last two of these 
results are required for a shock wave. The first shows that the flow is actually 
accelerated through the second shock and it is interesting to recall that Kogan 
(1960) showed that an acceleration could occur across a magneto-gasdynamic 
shock when he applied linearized theory to the flow past a thin wedge with x1 = +rr 
(he found such accelerations through the second shocks both above and below 
the wedge). 

The leading shock wave is ‘fast’ (i.e. the normal components of flow are super- 
Alfvhic in front of and behind it). The second shock wave satisfies the second 
law of thermodynamics, and it is easy to show that Vn3 < us3 (the suffix n here 
referring to the normal to the second shock), where us is the slow magneto- 
acoustic speed defined below. A further simple calculation shows that Vn2 > us, 
(n again referring here to the second shock) but, to the order of approximation 
so far achieved, 

Vn, = bn2, 

where b i  = ,uH:/p (b2 = ,uH2/p and is the square of the Alfv6n speed). This shows 
that the second shock wave comes into being with all the properties of a ‘switch- 
off’ shock except that there is no normal component of magnetic field in the 
limit. The true nature of the second shock requires the investigation of the 
next approximation (at lea.st), and this has been carried out. The algebra is 
rather long and will not be reproduced here. There are again just sufficient 
equations and boundary conditions to permit the constant coefficients to be 
found. Computations have been carried out for s: = 0.1, MI = 1.9, 2.0, 2.25, 
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2.5, 2.75, 3.0 and x1 = 2" (2") 12" for a wedge of 20" semi-angle. For these cases 
the second shock waves have the property that V,, < b,, for small x,. Thus the 
second shock wave on the upper surface is slow. Both fast and slow shocks 
satisfy the conditions for stability laid down by Akhiezer, Liubarskii & Polovin 
(1959) and later discussed in considerable detail by Anderson (1963).  These 
conditions are that one of the following pairs of inequalities must hold: 

(i) U f l  < V,, < 00, 

(ii) us, < V,, < b,,, 
bn, < Vn2 < uf2, 

0 < V,, < us,. 
Here the suffices 1, 2 refer respectively to the upstream and downstream sides 
of whatever shock is being examined and 

uf ,  us = [+(az + b2) & +,/{(a2 + b2) - 4a2bi}]+, 

the upper and lower signs referring respectively to uf ,  us, the so-called fast and 
slow magneto-acoustic speeds. 

Similar considerations applied to the results for the lower half-plane lead to 

fi = - (92-'2)/(' -k2c)7 ( 31 )  

and v;/ v; = 1 - k2c, 

while &p;l and p;/pL have the same values as the corresponding quantities in 
region 111. Equation (32 )  shows that the flow is decelerated through the second 
shock, in contrast with what occurs on the upper side of the wedge. 

As before the quantities bi, c;l, . . . , 1; can be determined. The f i s t  approximation 
to a is obtained from the equality H3 = HA by writing 

= (H3/H2)  ( H Z / H l ) ,  

which gives {f,/sin (0, - a)} + {fi/sin (0, + a)} = 0. 

tan a = ( 1/k2J tan 8,. 

( 3 3 )  

When f 3 ,  f; are replaced by their respective values from (28 )  and (31 )  it  follows 
a t  once that 

This formula gives the inclination of the magnetic field inside the wedge. It 
shows that a > 0, (and incidentally verifies that HJH,  > 0 as required). 

The second shock on the lower surface has the same kind of limit for x1 -+ 0 
as the one on the upper surface. It can be shown that V;, < ui3 to 0(1) and 
the computed values satisfy this inequality and also the inequality u:, < VA2 in 
all cases. The values obtained for bA2/ YLz were not always greater than unity-for 
example, for Ml = 2-0 with x1 = 8' - 12" and for MI = 2-5, 3.0 for all x1 > O-but 
i t  should be pointed out that to the degree of approximation undertaken the 
values could not include all contributions of O(x;) ,  whereas the ratio was so close 
to unity that terms of this order could alter the conclusions. This was not so on 
the upper surface, where the computed values exceeded unity by a quantity 
greater than O(x;).  

The resolution of the stability question for this second shock on the lower sur- 
face is still undecided if the behaviour of the component of magnetic field parallel 
to the shock is studied. This component must reverse in direction if a shock fs 
unstable. The computed values of S', xj indicate marginal stability, but here the 

( 3 4 )  
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calculation lacks terms of O(x;) in the value of x;. For full second-order terms 
to be obtained some of the expansions used would need to be calculated to 
O ( x ; ) ;  this would have involved an excessive amount of computation.? 

In  the table are given the results of computations based on the series expansions 
for Ml = 2.0, 2.5, and 3.0 and for x1 = 0" and 12". Values for intermediate values 
for x1 may be found by linear interpolation. 

The results show that as x1 increases the pressure ratio across the second shock 
on the lower surface falls from its limiting values while on the upper surface it 
rises above this value. The density ratio across the second shock on the lower 
surface also falls as x1 increases, and indeed drops a little below unity for the two 
lower Mach numbers. This is contrary to the requirements for a shock wave, 
but the ratio can only be calculated to O(xl) and the fall is therefore not con- 
clusive. $ 

If some of the shock-wave configurations are in fact unstable, some break-up 
of the stipulated components of the flow into more complicated wave systems 
is to be expected. It has also to be pointed out that the investigation of this 
paper is restricted to flows with four shock waves. The possibility of the occur- 
rence of flows with both shocks and expansion waves has not been considered. 

6.2. k,, = 1 

When k,, = l,f3 + g, - I, = & f3. The upper sign may be rejected because of the 
result (19). By inspection the lower sign is found to be admissible. However, 
since also f; + g; - 1; = & f; the upper sign here may be rejected for the same 
reason as before (use (20)). The lower sign gives f; < 0. But for the flow in region 
11' to intersect the shock,f; + g; - 1; must be negative; there is thus a contradic- 
tion. Therefore, with this value of k,, a shock-wave solution of the type sought 
cannot be found. It has been demonstrated by Pack & Swan (1965) that this 
value of k,, is associated with shock waves that are physically unstable in the 
Cabannes problem. 

6.3. k,, > 1 

Mathematical consistency now demands that f3 = (9, - Z,)/(k,, - 1)  and 

f; = -(g,-~,)/(k,c+l)* 
This implies thatf; + gh - 1; > 0, with the consequence that the flow behind the 
first (lower) shock wave cannot meet the postulated second shock. There 
cannot therefore be two shock waves on the lower surface of the wedge. Pack 

t After this paper was written it was discovered that a group at the Mathematics 
Research Center, United States Army, University of Wisconsin, U.S.A., working under 
the direction of Dr L. B. Rall had devised a program capable of dealing with the full 
system of 24 equations. Mrs Julia Gray kindly solved the equations for the wedge of 20" 
semi-angle with E: = 0.1, M ,  = 2.5 and x1 = 12". Her values show the second shock on 
the lower surface to be stable. They differ from the values computed for this paper by 
no more than one unit in the second significant figure (and in the majority of cases agree 
to this level of accuracy), even for quantities computed here only to O(xl), except for 
xi which has a three unit difference, corresponding to O(&x:). 

The authors are indebted to Dr Rall for permission to quote these results. 
$ In  Mrs Gray's results pg/pL > 1. 
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& Swan (1965) have shown that this value of k,, is associated with shock waves 
which, if they exist, are either not physically stable or are unacceptable on other 
grounds. 

One of us (G. W. S.) was indebted to the Sir James Caird Scholarship Trust 
for a Junior Scholarship in Aeronautics during the early stages of this work. 
Latterly, the work was sponsored by the Air Force Office of Scientific Research, 
OAR, through the European Office, Aerospace Research, United States Air 
Force, under Grants nos. EOAR 64-6 and 65-58. 

The computations were carried out on the Ferranti Sirius computer at  the 
University of Strathclyde. 
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